Model-based Recognition

نویسندگان

  • D. W. Jacobs
  • T. D. Alter
چکیده

Building robust recognition systems requires a careful understanding of the eeects of error in sensed features. In model-based recognition, matches between model features and sensed image features typically are used to compute a model pose and then project the unmatched model features into the image. The error in the image features results in uncertainty in the projected model features. We rst show how error propagates when poses are based on three pairs of model and image points. In particular, we show how to simply and eeciently compute the region in the image where an unmatched model point might appear, for both Gaussian and bounded error in the detection of image points, and for both scaled-orthographic and perspective projection models. This result applies to objects that are fully three-dimensional, where past results considered only two-dimensional objects. The result is based on an approximation that accurately linearizes the relationship between matched image points and unmatched, projected model points. Secondly, based on the linear approximation, we show how we can utilize linear programming to compute the propagated error region for any number of initial matches. Finally, we use these results to extend, from two-dimensional to three-dimensional objects, robust implementations of alignment, interpretation-tree search, and transformation clustering.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

A Predictive Model for Emotion Recognition Based on Individual Characteristics and Autonomic Changes

Introduction: The importance of individual differences in the problem of emotion recognition has been repeatedly stated in the studies. The major concentration of this study was the prediction of heart rate variability (HRV) changes due to affective stimuli from the subject characteristics. These features were age (A), gender (G), linguality (L), and sleep (S) information. In addition, the most...

متن کامل

Allophone-based acoustic modeling for Persian phoneme recognition

Phoneme recognition is one of the fundamental phases of automatic speech recognition. Coarticulation which refers to the integration of sounds, is one of the important obstacles in phoneme recognition. In other words, each phone is influenced and changed by the characteristics of its neighbor phones, and coarticulation is responsible for most of these changes. The idea of modeling the effects o...

متن کامل

Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM

Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...

متن کامل

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

Steel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps

Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994